PENENTUAN RUTE TERBAIK PENDISTRIBUSIAN DENGAN METODE ANT COLONY OPTIMIZATION (STUDI KASUS PERUSAHAAN JASA PERGUDANGAN SPAREPART JAWA BARAT)
نویسندگان
چکیده
This study aims to determine the best route for spare part product distribution. research was conducted in one of companies engaged production parts, where company there is a Logistics department that functions handle distribution process. In process distributing goods, costs are required. addition, trucks used goods each distributor go through different routes, so this also based on distance between locations. order obtain route, offers solution using Ant Colony Optimization (ACO) method by determining be taken truck. The selection ACO algorithm uses Traveling Salesman Problem (TSP) location point can only made visit. results while first cycle depots located area V0-V4-V6-V2-V5-V7-V1-V8-V3-V0. That depot Karawang (V0) MPP (V4), then DAS (V6), KKI (V2), TBB (V5), MTN (V7), DYH (V1), MMH (V8), MSS (V3), and back (V0). covers 83 km. 255.5 km.Keywords: (ACO); Goods Distribution; Best Route
منابع مشابه
Sistem penunjang keputusan kelayakan pemberian pinjaman dengna metode fuzzy tsukamoto
Abstrak – Sistem penunjang keputusan (SPK) dapat digunakan untuk membantu penyelesaikan permasalahan atau pengambilan keputusan yang bersifat semi terstruktur atau terstruktur. Metode yang digunakan adalah Fuzzy Tsukamoto. PT Triprima Finance merupakan suatu perusahaan yang bergerak di bidang jasa peminjaman dengan jaminan berupa Buku Pemilik Kenderaan Bermotor atau mobil (BPKB). PT. Triprima F...
متن کاملKlasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization
Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...
متن کاملAnt Colony System Optimization
Successful heuristic algorithms for solving combinatorial optimization problems have mimicked processes observed in nature. Two highly successful families of algorithms that do this are simulated annealing and genetic algorithms. Here, a third family of algorithms, ant colony optimization is explored and implemented in C#. The test bed for evaluating the quality of solutions is based on several...
متن کاملAnt Colony Optimization
Swarm intelligence is a relatively novel approach to problem solving that takes inspiration from the social behaviors of insects and of other animals. In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful one is the ant colony optimization. Ant colony optimization (ACO) algorithm, a novel population-based and meta-heuristic app...
متن کاملEvolving Ant Colony Optimization
Ant Colony Optimization (ACO) is a promising new approach to combinatorial optimization. Here ACO is applied to the traveling salesman problem (TSP). Using a genetic algorithm (GA) to nd the best set of parameters, we demonstrate the good performance of ACO in nding good solutions
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Industry xplore
سال: 2023
ISSN: ['2528-0821', '2580-5479']
DOI: https://doi.org/10.36805/teknikindustri.v8i2.5644